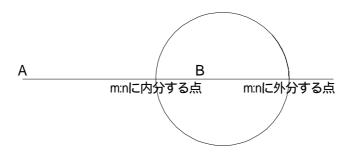
アポロニウスの円

定義を少し広げる試み

愛知県立高浜高等学校 山崎博司

■ 1.はじめに

「数研通信 」 HNo .33L に次のようなことが載 っ ていた。



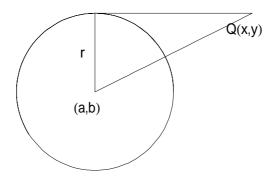
証明は、 アポロニウスの円が図のように線分 ABe m:n に内分する点と外分する点を直径の両端とすることから 、 中心の座標 (それらの中点 Le 計算すればよい 。 (神奈川県湘南高校 石濱文武先生)

このことの別証を示したいと思う。

■ 2.内容

予備知識として次の2つの(1),(2)を確認しておく。

(1) 点 Hx, yL が円外のとき、f Hx, $yL = Hx - aL^2 + Hy - bL^2 - r^2$ は Hx, yL から円 f Hx, yL = 0 にひいた接線の長さの2乗を表す。



(2) 2つの円

f Hx, yL = Hx -
$$a_1L^2$$
 + Hy - b_1L^2 - r_1^2 = 0
g Hx, yL = Hx - a_2L^2 + Hy - b_2L^2 - r_2^2 = 0

に対して、方程式

sfHx, yL + tgHx, yL = 0

は円 Hまたは 1 点、虚円L を表し、その中心は線分 ABをt:sにわける点である。ただし、f Hx, yL = 0, g Hx, yL = 0 の中心をそれぞれA, Bとする。とくに st < 0 のときは必ず円になる。

(「方程式 sf Hx, yL + tg Hx, yL = 0 の表す図形」参照)

さて、 2点 A Ha_1 , b_1 L, B Ha_2 , b_2 L を中心とする 2 つの円

$$f Hx$$
, $yL = Hx - a_1L^2 + Hy - b_1L^2 - r_1^2 = 0$

g Hx, yL = Hx -
$$a_2L^2$$
 + Hy - b_2L^2 - r_2^2 = 0

を考える。 これら 2 つの円までの接線の長さの比 $f_m:n$ になる点 の軌跡の 方程式は

$$\frac{f Hx, yL}{m^2} = \frac{g Hx, yL}{n^2}$$

である。 だから

$$n^2$$
 f Hx, yL - m^2 g Hx, yL = 0

となる。

これは円を表し、その中心は線分 $ABEH-m^2L:n^2$ に分ける点、つまり $m^2:n^2$ に外分する点である。

ここで 2 つの円 f Hx , yL=0 , g Hx , yL=0 の半径を限りなく 0 に近づければ、 できあがり。

[まとめ]

上の方程式

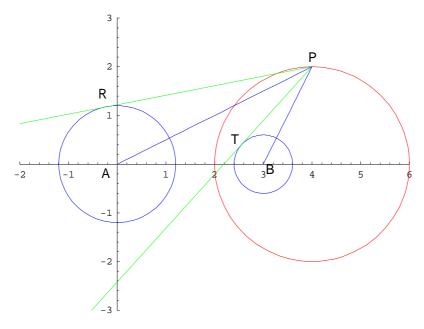
$$n^2$$
 f Hx, yL - m^2 g Hx, yL = 0

つまり

 n^2 8Hx - a_1L^2 + Hy - b_1L^2 - r_1^2 < - m^2 8Hx - a_2L^2 + Hy - b_2L^2 - r_2^2 < = 0 は、もとの 2 つの円までの接線の長さの比がm:n になる点の軌跡であり、円を表す。 そしてその中心は線分 A B を $m^2:n^2$ に外分する点である。 とくに

 $r_1 = mk, r_2 = nk, Hk \in \tilde{N}L$

のとき、アポロニウスの円に一致する (つまり2定点A, Bからの距離の比が m:n である点の軌跡になっている。)



H:L 上の図で、 $r_1 = mk$, $r_2 = nk$ であるとき $\triangle PRA$ と $\triangle PTB$ は相似である。 だから

$$\frac{PA}{PB} = \frac{PR}{PT} =$$

m n

٠.