【内容目標】数Ⅱの知識と数Ⅲの知識を合体させいろいろな曲線の極値を求めよう!

□関数の増減 ↓ 基本数Ⅱと同じ

関数 f(x) が区間 [a, b]で連続で、区間 (a, b) で微分可能であるとき、平均値の定理により、

関数の増減*について次のことが成り立つ。

導関数の符号と関数の増減

- 1 区間 (a, b) で常に f'(x) > 0 ならば, f(x) は区間 [a, b] で増加する。
- 2 区間 (a, b) で常に f'(x) < 0 ならば, f(x) は区間 [a, b] で減少する。
- 3 区間 (a, b) で常に f'(x) = 0 ならば, f(x) は区間 [a, b] で定数である。

* 区間 I に含まれる任意の 2 数 x_1 , x_2 について, $[x_1 < x_2]$ ならば $f(x_1) < f(x_2)$ 」が成り立つとき、 関数 f(x) は区間 I で増加するといい, 「 $x_1 < x_2$ ならば $f(x_1) > f(x_2)$ 」が成り立つとき、

関数 f(x) は区間 I で減少するという。

 $a \le x_1 < x_2 \le b$ となる任意の 2 数 x_1 , x_2 に対して, 平均値の定理により

$$f(x_2) - f(x_1) = f'(c)(x_2 - x_1), x_1 < c < x_2$$

を満たす実数 c が存在する。

- 【1の証明】区間 (a, b) で常に f'(x) > 0 ならば、 x_1 、 x_2 のとり方によらず、常に f'(c) > 0 となる。 $x_2 - x_1 > 0$ であるから、 $f(x_2) - f(x_1) > 0$ すなわち $f(x_1) < f(x_2)$ が成り立つ。 f(x) は区間 [a, b] で増加する。
- 【2の証明】区間 (a, b) で常に f'(x) < 0 ならば、 x_1, x_2 のとり方によらず、常に f'(c) < 0 となる。 $x_2 - x_1 > 0$ であるから、 $f(x_2) - f(x_1) < 0$ すなわち $f(x_1) > f(x_2)$ が成り立ち、 f(x) は区間 [a, b] で減少する。
- 【3の証明】区間 (a, b) で常に f'(x) = 0 ならば、 x_1 、 x_2 のとり方によらず、常に f'(c) = 0 となる。 よって, $f(x_2) - f(x_1) = 0$ すなわち $f(x_1) = f(x_2)$ が成り立ち,

f(x) は区間 [a, b] で定数である。

関数 f(x), g(x) がともに区間 [a, b]で連続で、区間 (a, b) で微分可能であるとき、 3を用い

ると、次のことが導かれる。

区間 (a, b) で常に g'(x) = f'(x) ならば, 区間 [a, b] で g(x) = f(x) + C ただし、Cは定数

微分して同じなら もとのグラフは 定数項の違いだけ

(ν軸方向に平行

移動したもの)

【証明】

h(x) = q(x) - f(x) とする。

区間 (a, b) で h'(x) = g'(x) - f'(x) = 0 であるから, h(x) は区間 [a, b] で定数である。

この定数を C とすると h(x) = C

すなわち g(x) - f(x) = C より g(x) = f(x) + C

導関数 f'(x) の符号を調べて、関数 f(x) の増減を調べてみよう。

例題3)次の関数の増減を調べよ。

$$f(x) = x - 2\sqrt{x}$$

関数の定義域は $x \ge 0$ である。 $f(x) = x - 2\sqrt{x} = x - 2x^{\frac{1}{2}}$

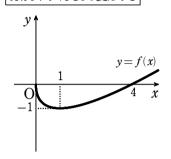
f'(x) = 0 とすると

f(x) の増減表は次のようになる。

х	0	•••••	1	
f'(x)		ı	0	+
f(x)	0	1	-1	1

よって、f(x) は

 $0 \le x \le 1$ で減少し、 $1 \le x$ で増加する。



□ 関数の極大と極小 ↓ 基本数 Ⅱ と同じ

連続な関数 f(x) が、x=a を境目として増加から減少に 移るとき, f(x) はx = a で **極大** であるといい, f(a) を **極大値** という。また、関数 f(x) が、x=b を境目として減少から増加に 移るとき, f(x) は x=b で **極小** であるといい, f(b) を **極小値** という。極大値と極小値をまとめて 極値 という。

関数 f(x) が x=a を含むある区間で微分可能であり、増減が 次のようになる場合は、f(a) が極値である。

	x		a		
f'	(x)	+	0	_	
f((x)	1	極大	Ä	

х		a		
f'(x)	_	0	+	
f(x)	M	極小	1	

一般に,次が成り立つことが知られている。

極値をとるための必要条件

関数 f(x) が x = a で微分可能であるとき

f(x) が x = a で極値をとるならば f'(a) = 0

ただし、逆は成り立たない。すなわち、

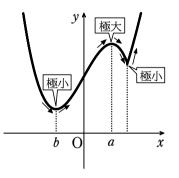
f'(a) = 0 であっても, f(x) が x = a で極値をとるとは限らない。

たとえば、関数 $f(x) = x^3$ は、

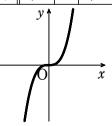
 $f'(x) = 3x^2$, f'(0) = 0 であるが, x = 0 で極値をとらない。

よって、微分可能な関数 f(x) の極値を求めるには、 f'(x) = 0 となる

x の値を求め、その値の前後における f'(x) の符号を調べる必要がある。



$f(x) = x^3$ の増減表									
х		0	•••••						
f'(x)	+	0	+						
f(x)	1	0	1						



 $p.174 \sim 179$

例題4)次の関数の極値を求めよ。

$$(1) \quad f(x) = xe^{-x}$$

$$(2) \quad f(x) = x + \frac{4}{x}$$

解答

(1)
$$f'(x) = e^{-x} + x(-e^{-x})$$

$$=(1-x)e^{-x}$$
 $f'(x)=0$ とすると $e^{-x}>0$ に注意 $x=1$

f(x) の増減表は次のようになる。

<i>x</i>		1						
f'(x)	+	0	_					
f(x)	1	極大 1 e	7					
$f(1) = 1 \cdot e^{-1} = \frac{1}{e}$								

よって、f(x) は

参考

x=1 で極大値 $\frac{1}{e}$ をとる。

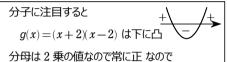
極小値はない。

(2) 関数の定義域は *x* **≥** 0 である。

$$f'(x) = 1 - \frac{4}{x^2} = \frac{x^2 - 4}{x^2}$$
$$= \frac{(x+2)(x-2)}{x^2}$$

$$f'(x) = 0$$
 とすると

$$x = -2, 2$$



х	•••	-2	•••	0	•••	2	•••
分子	+	0	-	/	ı	0	+
分母	+	4	+	/	+	4	+
f'	+	0	_	/	_	0	+

と見ることができる

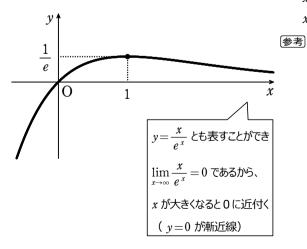
f(x) の増減表は次のようになる。

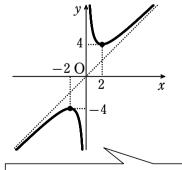
x		-2		0	•••••	2	•••••
f'(x)	+	0	_		_	0	+
f(x)	1	極大 -4	A		X	極小 4	1

よって、f(x) は

$$x = -2$$
 で極大値 -4 ,

x=2 で極小値 4 をとる。





漸近線が x=0 とy=x であることから グラフの概形が分かる

例題)次の関数の極値を求めよ。

$$y' = \frac{1 \cdot (x^2 + 1) - x \cdot 2x}{(x^2 + 1)^2}$$
 $= \frac{-x^2 + 1}{(x^2 + 1)^2}$ (分母) $\Rightarrow 0$
 $y' = 0$ とすると

$$-x^2+1=0$$

$$x^2-1=0 はり (x-1)(x+1)=0 なので x=-1, 1$$

分子に注目すると

$$g(x) = -x^2 + 1$$
 は上に凸

分母は2乗の値なので常に正なので

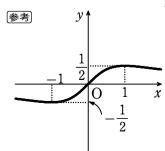
x	•••	-1	•••	1	•••
分子	_	0	+	0	_
分母	+	4	+	4	+
<i>y'</i>		0	+	0	_

よって, yの増減表は次のようになる。

x		-1		1	
<i>y'</i>	_	0	+	0	_
у	K	極小 - <u>1</u>	1	極大 <u>1</u> 2	1

ゆえに, yは x = -1 で極小値 $-\frac{1}{2}$,

x=1 で極大値 $\frac{1}{2}$ をとる。



(2)
$$y = \sin^2 x + 2\sin x$$
 $(0 \le x \le 2\pi)$

$$y = \frac{1}{2}(1 - \cos 2x) + 2\sin x$$
 2 倍角
 $y' = 0 + \frac{1}{2}\sin 2x \cdot 2 + 2\cos x$

$$= 2\sin x \cos x + 2\cos x$$

$$= 2\cos x (\sin x + 1)$$

$$y'=0$$
 とすると,

$$2\cos x(\sin x + 1) = 0$$

$$\cos x = 0 , \quad \sin x = -1$$

$$0 < x < 2\pi$$
 \circlearrowleft

$$x=\frac{\pi}{2}$$
, $\frac{3}{2}\pi$

$y' = 2\cos x(\sin x + 1)$ (\$\dagger\$

				_			
х	0		$\frac{\pi}{2}$	•••	$\frac{3}{2}\pi$		2π
cosx	1	+	0	_	0	+	1
$\sin x + 1$	1	+	2	+	0	+	1
<i>y'</i>	2	+	0	_	0	+	2

と見ることができる

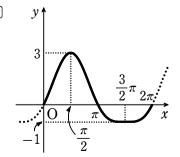
よってνの増減表は次のようになる。

		-				-	
х	0		$\frac{\pi}{2}$		$\frac{3}{2}\pi$		2π
<i>y'</i>		+	0	_	0	+	
у	0	1	極大 3	A	極小 -1	1	0

ゆえに, yは $x=\frac{\pi}{2}$ で極大値 3,

$$x=\frac{3}{2}\pi$$
 で極小値 -1 をとる。

参考



関数が x=a で微分可能 (なめらか) でなくても, x=a で極値をとる場合がある。

例題5) 関数 $f(x) = |x| \sqrt{x+1}$ の極値を求めよ。

方針 絶対値をはずし、それぞれの区間で導関数の符号を調べる。

解答 関数の定義域は $x \ge -1$ である。

i) $x \ge 0$ のとき $f(x) = x\sqrt{x+1}$

 $\bigcirc \ge 0$ のとき $|\bigcirc| = x$

(通分)
$$\sqrt{x+1} = \frac{\sqrt{x+1}}{1}$$

$$= \frac{\sqrt{x+1} \cdot 2\sqrt{x+1}}{1 \cdot 2\sqrt{x+1}}$$

$$= \frac{2(x+1)}{2\sqrt{x+1}} + \frac{x}{2\sqrt{x+1}}$$

$$= \frac{2(x+1)}{2\sqrt{x+1}}$$

$$= \frac{3x+2}{2\sqrt{x+1}}$$

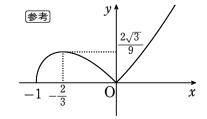
よって, x>0 では, 3x+2>0, $2\sqrt{x+1}>0$ であるから 常に f'(x)>0

ii)
$$-1 \le x < 0$$
 のとき $f(x) = -x\sqrt{x+1}$ $\bigcirc < 0$ のとき $|\bigcirc| = -x$
$$-1 < x < 0$$
 において $f'(x) = -\frac{3x+2}{2\sqrt{x+1}}$ i) の結果の符号違い
$$f'(x) = 0$$
 とすると $x = -\frac{2}{3}$ (分母) ≥ 0 より (分子) $= 0$

以上から、f(x) の増減表は次のようになる。

(i) (ii) (ii) (ii) (ii) (ii) (ii) (ii)										
ii) i)										
	/				` _					
х	-1	••••	$-\frac{2}{3}$	••••	0					
f'(x)		+	0	_		+				
f(x)	0	1	極大 2√3 9	A	極小	1				

よって、f(x) は $x = -\frac{2}{3}$ で極大値 $\frac{2\sqrt{3}}{9}$, x = 0 で極小値 0 をとる。



応用例題3) 関数 $f(x) = \frac{x^2 + x + a}{x - 1}$ が x = -1 で極値をとるように, 定数 a の値を定めよ。また、このとき、関数 f(x) の極値を求めよ。

Eント f(x) は x=-1 で微分可能であるから, f(x) が x=-1 で極値をとるならば, f'(-1)=0 である。

解答 定義域は $x-1 \neq 0$ より $x \neq 1$

$$f'(x) = \frac{(2x+1)(x-1) - (x^2 + x + a)}{(x-1)^2} = \frac{x^2 - 2x - 1 - a}{(x-1)^2}$$

f(x) は x=-1 で微分可能であるから、 数皿の解答としては触れておきたい

f(x) が x=-1 で極値をとるならば f'(-1)=0

すなわち
$$\frac{(-1)^2 - 2 \cdot (-1) - a}{(-1-1)^2} = \frac{2-a}{4} = 0$$

これを解くと、a=2となる。

このとき
$$f(x) = \frac{x^2 + x + 2}{x - 1}$$
$$f'(x) = \frac{x^2 - 2x - 3}{(x - 1)^2} = \frac{(x + 1)(x - 3)}{(x - 1)^2}$$

常に
$$(x-1)^2 \ge 0$$
 であるから
符号は分子の $(x+1)(x-3)$ できまる $+$ 1 $+$ 1 $+$ 1 x

f(x) の増減表は次のようになる。

x			-1		1		3	
f'(z)	r)	+	0	_		_	0	+
f(x)	:)	1	極大 -1	A		1	極小 7	1

よって, f(x) は x = -1 で極値をとり, 条件を満たす。

圏 a=2, x=-1 で極大値 -1, x=3 で極小値 7

補足 f'(-1) = 0 であっても f(x) が x = -1 で極値をとるとは限らないため、 増減表によって、x = -1 で極値をとることを確認している。

練習9)次の関数の増減を調べよ。

 $(1) \quad f(x) = x - e^{x}$

- $(2) \quad f(x) = x \log x$
- (3) $f(x) = x + \sin x \quad (0 \le x \le \pi)$

練習10)次の関数の極値を求めよ。

(1)
$$f(x) = x^2 e^{-x}$$

$$(2) \quad f(x) = x \log x$$

(1)
$$f(x) = x^2 e^{-x}$$
 (2) $f(x) = x \log x$ (3) $f(x) = x + \frac{2}{x}$

練習11)次の関数の極値を求めよ。

(1)
$$f(x) = |x|(x+1)$$

$$(2) \quad f(x) = |x|\sqrt{x+2}$$

練習12)関数 $f(x)=x+\frac{a}{x}$ が x=1 で極値をとるように,定数 a の値を定めよ。また,このとき,関数 f(x) の極値を求めよ。

練習9)次の関数の増減を調べよ。

$$(1) \quad f(x) = x - e^x$$

$$(2) \quad f(x) = x - \log x$$

(3)
$$f(x) = x + \sin x$$
 $(0 \le x \le \pi)$

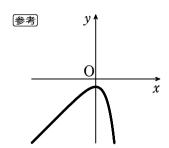
解説

(1) $f'(x) = 1 - e^x$

$$f'(x) = 0$$
 とすると $x = 0$

f(x) の増減表は次のようになる。

x		0		
f'(x)	+	0	_	
f(x)	1	-1	N	



よって、f(x) は、 $x \le 0$ で増加し、 $0 \le x$ で減少する。

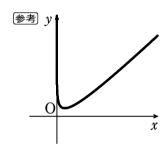
(2) 関数の定義域はx>0である。

$$f'(x) = 1 - \frac{1}{x} = \frac{x - 1}{x}$$

$$f'(x) = 0$$
 とすると $x = 1$

f(x) の増減表は次のようになる。

x	0	•••••	1	
f'(x)		_	0	+
f(x)		M	1	1

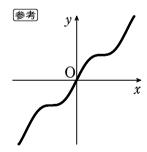


よって、f(x) は、 $0 < x \le 1$ で減少し、 $1 \le x$ で増加する。

 $(3) f'(x) = 1 + \cos x$

 $0 < x < \pi$ で常に f'(x) > 0

よって、f(x) は定義域で常に増加する。



練習10)次の関数の極値を求めよ。

(1)
$$f(x) = x^2 e^{-x}$$

$$(2) \quad f(x) = x \log x$$

(1)
$$f(x) = x^2 e^{-x}$$
 (2) $f(x) = x \log x$ (3) $f(x) = x + \frac{2}{x}$

解説

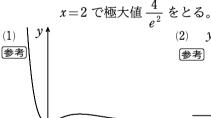
(1)
$$f'(x) = 2xe^{-x} + x^{2}(-e^{-x})$$
$$= -(x-2)xe^{-x}$$

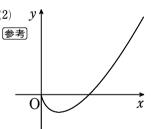
 $e^{-x} > 0$ であるから f' の符号は -(x-2)x の符号と一致する

f(x) の増減表は次のようになる。

\overline{x}		0		2	
f'(x)	_	0	+	0	_
f(x)	7	極小	1	極大 $\frac{4}{e^2}$	¥

よって、f(x) は x=0 で極小値 0,





(2) 関数の定義域はx>0である。

$$f'(x) = \log x + x \cdot \frac{1}{x}$$

$$= \log x + 1$$
 $f'(x) = 0$ とすると $\log x = -1$
 $x = e^{-1} = \frac{1}{e}$

f(x) の増減表は次のようになる。

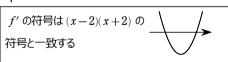
х	0	•••••	$\frac{1}{e}$	•••••
f'(x)		_	0	+
f(x)		V	極小 $-\frac{1}{e}$	1

 $x = \frac{1}{e}$ で極小値 $-\frac{1}{e}$ をとる。

極大値はない。

(3) 関数の定義域は *x* **≥** 0 である。

$$f'(x) = 1 - \frac{2}{x^2} = \frac{x^2 - 2}{x^2}$$
 符号と一致する

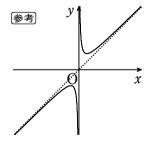


よって、f(x) は

f'(x) = 0 とすると $x^2 - 2 = 0$ より $x = -\sqrt{2}$, $\sqrt{2}$

f(x) の増減表は次のようになる。

х		$-\sqrt{2}$	•••••	0	•••••	$\sqrt{2}$	
f'(x)	+	0	_		_	0	+
f(x)	1	極大 -2√2	A		1	極小 2√2	1



よって、f(x) は $x=-\sqrt{2}$ で極大値 $-2\sqrt{2}$ 、 $x=\sqrt{2}$ で極小値 $2\sqrt{2}$ をとる。

p.174~179 練習問題

練習11)次の関数の極値を求めよ。

(1)
$$f(x) = |x|(x+1)$$

(2)
$$f(x) = |x| \sqrt{x+2}$$

解説

(1)
$$x \ge 0$$
 のとき $f(x) = x^2 + x$ $x > 0$ において $f'(x) = 2x + 1$ よって, $x > 0$ では, 常に $f'(x) > 0$

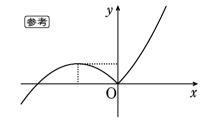
$$x < 0$$
 のとき
$$f(x) = -x^2 - x$$

$$f'(x) = -2x - 1$$

$$f'(x) = 0$$
 とすると
$$x = -\frac{1}{2}$$

以上から、
$$f(x)$$
 の増減表は次のようになる。

-	(x)									
	x		$-\frac{1}{2}$		0	•••••				
	f'(x)	+	0	_		+				
	f(x)	1	極大 <u>1</u> 4	A	極小	1				



よって, f(x) は $x = -\frac{1}{2}$ で極大値 $\frac{1}{4}$, x = 0 で極小値 0 をとる。

(2) 関数の定義域は $x \ge -2$ である。

$$x \ge 0$$
 のとき $f(x) = x\sqrt{x+2}$

$$x > 0$$
 において $f'(x) = \sqrt{x+2} + \frac{x}{2\sqrt{x+2}} = \frac{2(x+2) + x}{2\sqrt{x+2}} = \frac{3x+4}{2\sqrt{x+2}}$

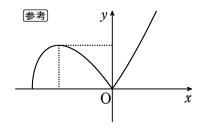
よって、
$$x>0$$
では、常に $f'(x)>0$

$$-2 \le x < 0$$
 のとき $f(x) = -x\sqrt{x+2}$

$$-2 < x < 0$$
 において $f'(x) = -\frac{3x+4}{2\sqrt{x+2}}$

以上から, f(x) の増減表は次のようになる。

-	x	-2	•••••	$-\frac{4}{3}$	•••••	0	•••••
	f'(x)		+	0	1		+
_	f(x)	0	1	極大 4√6 9	7	極小	1



よって, f(x) は $x = -\frac{4}{3}$ で極大値 $\frac{4\sqrt{6}}{9}$, x = 0 で極小値 0 をとる。

練習12)関数 $f(x) = x + \frac{a}{x}$ が x = 1 で極値をとるように、定数 a の値を定めよ。また、このとき、関数 f(x) の極値を求めよ。

解説)

$$f'(x) = 1 - \frac{a}{x^2} = \frac{x^2 - a}{x^2}$$

f(x) は x=1 で微分可能であるから,f(x) が x=1 で極値をとるならば

これを解くと a=1

このとき
$$f(x) = x + \frac{1}{x}$$
, $f'(x) = \frac{x^2 - 1}{x^2} = \frac{(x+1)(x-1)}{x^2}$

f(x) の増減表は次のようになる。

x		-1		0		1	
f'(x)	+	0	_		_	0	+
f(x)	1	極大 -2	1		N	極小 2	1

よって、f(x) は x=1 で極値をとり、条件を満たす。

圏 a=1; x=-1 で極大値 -2, x=1 で極小値 2