微分法の応用【関数の最大·最小】 p.180

【内容目標】増減表から最大・最小を読み取ろう!

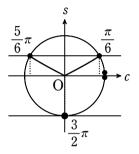
例題6) 次の関数の最大値、最小値を求めよ。

解答

$$y=(1+\sin x)\cos x$$
 $(0 \le x \le 2\pi)$ 積の微分法
 $y'=\cos x \cdot \cos x + (1+\sin x) \cdot (-\sin x)$
 $=\cos^2 x - \sin x - \sin^2 x$
 $=-2\sin^2 x - \sin x + 1$ $\cos^2 x = 1 - \sin^2 x$

 $0 < x < 2\pi$ において、y' = 0 となる x の値は $-(2\sin x - 1)(\sin x + 1) = 0 \quad$ より $\sin x = \frac{1}{2} \quad$ または $\sin x = -1$ より $x = \frac{\pi}{6}$ 、 $\frac{5}{6}\pi$ 、 $\frac{3}{2}\pi$

 $= -(2\sin x - 1)(\sin x + 1)$



yの増減表は次のようになる。

x	0		$\frac{\pi}{6}$		$\frac{5}{6}\pi$		$\frac{3}{2}\pi$		2π
$2\sin x - 1$		_	0	+	0	_		_	
$\sin x + 1$		+		+		+	0	+	
y'		+	0	_	0	+	0	+	
у	1	1	極大 3√3 4	V	極小 - 3√3 4	1	0	1	1

よって、yは

$$x = \frac{\pi}{6}$$
 で最大値 $\frac{3\sqrt{3}}{4}$, $x = \frac{5}{6}\pi$ で最小値 $-\frac{3\sqrt{3}}{4}$

をとる。

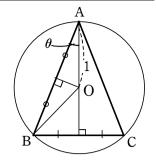
微分法の応用【関数の最大·最小】 p.180

例題)AB=AC, $\angle BAC=2\theta$ である二等辺三角形 ABC が, 半径 1 の円 0 に内接している。 θ が変化するとき,

この三角形の周の長さの最大値とそのときの θ の値を求めよ。

$$AB = AC = 2OA\cos\theta = 2\cos\theta$$

$$BC = 2AB\sin\theta = 4\sin\theta\cos\theta$$



 \triangle ABC の周の長さを yとすると

$$y=4\cos\theta+4\cos\theta\sin\theta$$
 $\left(0<\theta<\frac{\pi}{2}\right)$ 積の微分法 $\cos^2\theta=1-\sin^2\theta$

よって

$$y' = -4\sin\theta + 4(-\sin^2\theta + \cos^2\theta)$$

$$= -4\sin\theta + 4(1-2\sin^2\theta)$$

$$= -4(2\sin^2\theta + \sin\theta - 1)$$

$$= -4(2\sin\theta - 1)(\sin\theta + 1)$$

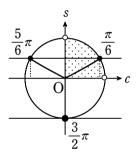
$$y'=0$$
 となるのは $\sin x = \frac{1}{2}$ または $\sin x = -1$

$$0< heta<rac{\pi}{2}$$
 なので、 $heta=rac{\pi}{6}$ のときである。

また, $0 < \theta < \frac{\pi}{2}$ において, yの増減表は次のようになる。

heta	0		$\frac{\pi}{6}$		$\frac{\pi}{2}$
$2\sin\theta-1$		_		+	
$\sin \theta + 1$		+		+	
y'		+	0	_	
ν		1	極大	/	\int
y	1		$3\sqrt{3}$	*	/

したがって、yは $\theta = \frac{\pi}{6}$ で 最大値 $3\sqrt{3}$ をとる。



練習13)次の関数の最大値、最小値を求めよ。

- (1) $y=(1+\cos x)\sin x$ $(0 \le x \le 2\pi)$
- (2) $y = \frac{4-3x}{x^2+1}$ $(1 \le x \le 4)$

節末問題5)次の関数の最大値,最小値を求めよ。

(1)
$$y = x\sqrt{4-x^2}$$
 $(-1 \le x \le 2)$ (2) $y = x + \sqrt{4-x^2}$

(2)
$$v = x + \sqrt{4 - x^2}$$

練習13) 次の関数の最大値、最小値を求めよ。

(1)
$$y=(1+\cos x)\sin x$$
 $(0 \le x \le 2\pi)$

(2)
$$y = \frac{4-3x}{x^2+1}$$
 $(1 \le x \le 4)$

解説

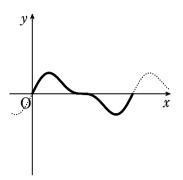
(1)
$$y' = -\sin x \cdot \sin x + (1 + \cos x)\cos x$$

 $= \cos^2 x - 1 + \cos x + \cos^2 x$
 $= 2\cos^2 x + \cos x - 1$
 $= (2\cos x - 1)(\cos x + 1)$

$$0 < x < 2\pi$$
 において、 $y' = 0$ となる x の値は $2\cos x - 1 = 0$ または $\cos x + 1 = 0$

$$\sharp \, \mathcal{V} \qquad x = \frac{\pi}{3}, \, \, \frac{5}{3}\pi, \, \, \pi$$

yの増減表は次のようになる。



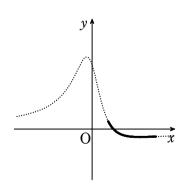
x	0		$\frac{\pi}{3}$	•••••	π	•••••	$\frac{5}{3}\pi$		2π
<i>y'</i>		+	0	_	0	ı	0	+	
у	0	1	極大 3√3 4	1	0	A	極小 $-\frac{3\sqrt{3}}{4}$	1	0

よって, yは $x = \frac{\pi}{3}$ で最大値 $\frac{3\sqrt{3}}{4}$, $x = \frac{5}{3}\pi$ で最小値 $-\frac{3\sqrt{3}}{4}$ をとる。

(2)
$$y' = \frac{-3(x^2+1) - (4-3x) \cdot 2x}{(x^2+1)^2}$$
$$= \frac{3x^2 - 8x - 3}{(x^2+1)^2} = \frac{(3x+1)(x-3)}{(x^2+1)^2}$$

1 < x < 4 において、y' = 0 となる x の値は x = 3 y の増減表は次のようになる。

x	1		3		4
y'		1	0	+	
y	$\frac{1}{2}$	1	極小 - <u>1</u> 2	1	$-\frac{8}{17}$



よって, yは x=1 で最大値 $\frac{1}{2}$, x=3 で最小値 $-\frac{1}{2}$ をとる。

節末問題5)次の関数の最大値,最小値を求めよ。

(1)
$$y = x\sqrt{4-x^2}$$
 $(-1 \le x \le 2)$ (2) $y = x + \sqrt{4-x^2}$

(2)
$$y = x + \sqrt{4 - x^2}$$

解説

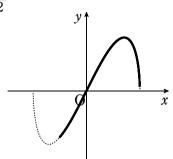
(1)
$$y' = \sqrt{4 - x^2} + x \cdot \frac{-2x}{2\sqrt{4 - x^2}} = \frac{2(2 - x^2)}{\sqrt{4 - x^2}}$$

-1 < x < 2 において y' = 0 となる x の値は $x = \sqrt{2}$ νの増減表は次のようになる。

x	-1		$\sqrt{2}$		2
<i>y'</i>		+	0	_	/
у	$-\sqrt{3}$	1	極大 2	A	0

よって、yは $x=\sqrt{2}$ で最大値 2、

$$x=-1$$
 で最小値 $-\sqrt{3}$ をとる。

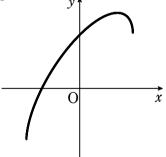


(2) 関数の定義域は、 $4-x^2 \ge 0$ より $-2 \le x \le 2$

$$-2 < x < 2$$
 において $y' = 1 + \frac{-2x}{2\sqrt{4-x^2}} = \frac{\sqrt{4-x^2}-x}{\sqrt{4-x^2}}$

y'=0となる x の値は、 $\sqrt{4-x^2}=x$ より $x=\sqrt{2}$ yの増減表は次のようになる。

٠	х	-2		$\sqrt{2}$		2
	<i>y'</i>		+	0	_	
	у	-2	1	極大 2√2	A	2



よって、yは $x=\sqrt{2}$ で最大値 $2\sqrt{2}$, x=-2 で最小値 -2 をとる。