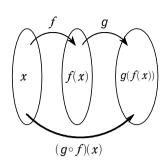
関数と極限【合成関数】 p.88~90

【内容目標】合成関数の考え方を理解しよう!

一般に、2つの関数 y=f(x)、z=g(y) があり、f(x) の 値域が g(y) の定義域に含まれているとき、g(y) に y=f(x) を代入すると、新しい関数 g(f(x)) が考えられる。この関数を、f(x) と g(y) の **合成関数** という。

$$g(f(x))$$
 を $(g \circ f)(x)$ とも書く。

注意 一般に、 $(g \circ f)(x) & (f \circ g)(x)$ は同じ関数ではない。 ($g \circ f = f \circ g$ が成り立つとは限らない)



例題3) f(x) = x + 1, $g(x) = 2^x$ について, 次の合成関数を求めよ。

$$(1) \quad (g \circ f)(x)$$

(2)
$$(f \circ g)(x)$$

$$\begin{array}{ll} (g \circ f)(x) = g(f(x)) & (f \circ g)(x) = f(g(x)) \\ = g(x+1) & = f(2^x) \\ = 2^{x+1} & = 2^x + 1 \end{array}$$

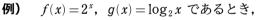
※ このように、一般に合成関数 $(g \circ f)(x)$ と $(f \circ g)(x)$ は一致しない。

□合成関数と逆関数

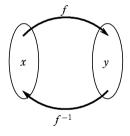
一般に、関数 y=f(x) が逆関数 $f^{-1}(x)$) をもつとき 次の式が成り立つ

$$(f^{-1} \circ f)(x) = f^{-1}(f(x)) = x$$

 $(f \circ f^{-1})(y) = f(f^{-1}(y)) = y$



合成関数 $(g \circ f)(x)$ と $(f \circ g)(x)$ をそれぞれ求めよ。



$$(g \circ f)(x) = g(f(x)) \qquad (f \circ g)(x) = f(g(x))$$

$$= g(2^{x}) \qquad = f(\log_{2} x)$$

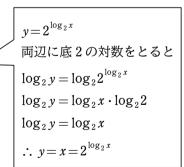
$$= \log_{2} 2^{x} \qquad = 2^{\log_{2} x} \angle$$

$$= x \cdot \log_{2} 2 \qquad = x$$

$$= x$$

※ このように、逆関数の関係のとき

合成関数 $(g \circ f)(x)$ と $(f \circ g)(x)$ は一致する。



1 練習**15)** $f(x) = x^2$, $g(x) = \log_2(x+1)$ について, 次の合成関数を求めよ。

 $(1) \quad (g \circ f)(x)$

 $(2) \quad (f \circ g)(x)$

② **練習16)** $f(x) = \sqrt{x}$, $g(x) = x^2$ ($x \ge 0$) について, $(f \circ g)(x)$, $(g \circ f)(x)$ がそれぞれ の定義域において $(f \circ g)(x) = x$, $(g \circ f)(x) = x$ となることを確かめよ。

- ③ a, b, c を定数とする。分数関数 $f(x) = \frac{ax+b}{x+c}$ は f(-1) = 1, f(0) = 4, f(1) = 5 を満たしている。
 - (1) $a = \sqrt[7]{}$, $b = \sqrt[4]{}$, $c = \sqrt[4]{}$ $c = \sqrt[4]{}$

 - (3) $(f \circ f)(x) = f(f(x)) = \frac{x + y}{x + y}$ である。

【金沢工業大】

- 1 **練習15)** $f(x) = x^2$, $g(x) = \log_2(x+1)$ について, 次の合成関数を求めよ。
 - $(1) \quad (g \circ f)(x)$

(2) $(f \circ g)(x)$

(解説)

- (1) $(g \circ f)(x) = g(f(x)) = g(x^2) = \log_2(x^2 + 1)$
- (2) $(f \circ g)(x) = f(g(x)) = f(\log_2(x+1)) = {\{\log_2(x+1)\}}^2$

② 練習**16)** $f(x) = \sqrt{x}$, $g(x) = x^2$ ($x \ge 0$) について, $(f \circ g)(x)$, $(g \circ f)(x)$ がそれぞれ の定義域において $(f \circ g)(x) = x$, $(g \circ f)(x) = x$ となることを確かめよ。

解説

y=f(x) の定義域は $x \ge 0$, 値域は $y \ge 0$ 。

y=g(x) の定義域は $x \ge 0$, 値域は $y \ge 0$ 。

f(x) の値域は g(x) の定義域と一致するので g(f(x)) は演算可能,

g の値域は f の定義域と一致するので f(g(x)) は演算可能,

$$(f \circ g)(x) = f(g(x)) = f(x^2) = \sqrt{x^2} = |x| = x \quad (: x \ge 0)$$

また

$$(g \circ f)(x) = g(f(x)) = g(\sqrt{x}) = (\sqrt{x})^2 = (x^{\frac{1}{2}})^2 = x$$

③ a, b, c を定数とする。分数関数 $f(x) = \frac{ax+b}{x+c}$ は f(-1) = 1, f(0) = 4, f(1) = 5 を満たしている。

(1)
$$a = \sqrt[7]{}$$
, $b = \sqrt[4]{}$, $c = \sqrt[5]{}$

$$(2) \quad f^{-1}(x) = \frac{ \begin{bmatrix} x \\ -x \end{bmatrix} - x \end{bmatrix} x$$
である。

【金沢工業大】

解説

(1)
$$f(-1) = \frac{-a+b}{-1+c}$$
, $f(0) = \frac{b}{c}$, $f(1) = \frac{a+b}{1+c}$ であるから $\frac{-a+b}{-1+c} = 1$, $\frac{b}{c} = 4$, $\frac{a+b}{1+c} = 5$ (ただし $c \neq \pm 1$, 0)

それぞれ分母を払って整理すると a-b+c=1, b=4c, a+b-5c=5これらを連立させて解くと $a={}^{7}7$, $b={}^{4}8$, $c={}^{9}2$ $(c \leftrightarrow +1, 0 を満たす)$

(2) (1)
$$\hbar$$
 5 $f(x) = \frac{7x+8}{x+2}$

$$y = \frac{7x+8}{x+2}$$
 ① とすると, $y = -\frac{6}{x+2} + 7$ であるから, $y \neq 7$ である。

① の分母を払うと y(x+2)=7x+8

変形すると
$$(y-7)x=8-2y$$
 であり、 $y \neq 7$ であるから $x = \frac{8-2y}{y-7}$

$$x$$
と y を入れ替えると $y = \frac{8-2x}{x-7}$ ゆえに $f^{-1}(x) = \frac{x^2 - x^2 - x}{x-x^2}$

(3)
$$(f \circ f)(x) = f(f(x)) = \frac{7 \cdot \frac{7x+8}{x+2} + 8}{\frac{7x+8}{x+2} + 2} = \frac{{}^{*}19x + {}^{7}24}{{}^{7}3x + {}^{3}4}$$