春はあけぼの夏は夜, 確率論はコインなげ

洞 彰人 (北海道大学大学院理学研究院)

数実研 Zoom, 2022 年 6 月 4 日

- 1. 序
- 2. コインなげモデル:有限試行
- 3. コインなげモデル:無限試行
- 4. Pascal 三角形

1. 序 — 確率論の発展

- Pascal と Fermat (17 世紀):賭けに関する書簡
- Laplace (1812):確率論の本
- Gauss (19 世紀前半):の誤差法則, 正規分布 (旧 10 マルク紙幣)
- Brown (19 世紀前半): 微粒子の不規則運動
- Einstein, Bachelier (1900 ごろ): Brown 運動
- Wiener (1923):確率過程としての Brown 運動 (Wiener 過程)
- Kolmogorov (1933):確率論の公理的展開 (数学として確立)
- 伊藤清 (1942): 確率過程の微分積分法, 確率微分方程式

•

Fields メダル (1936 -): 確率論の業績では 2006 年が初. 以後多数.

伊藤清: 第 1 回 Gauss 賞 (2006)

2. コインなげモデル <有限試行>

- n 回コインなげの標本 (根元事象) $\omega = (\omega_1, \omega_2, \cdots, \omega_n)$, $\omega_j = 1$ or 0
- 全事象 (標本空間) $\Omega = \{0,1\} \times \{0,1\} \times \cdots \times \{0,1\} = \{0,1\}^n$

事象 (全事象の部分集合) $E \subset \Omega$

確率
$$P: E \longmapsto P(E) = \sum_{\omega \in E} P(\omega)$$
.

1 の確率が p で, 0 の確率が 1-p, 各回試行が独立 (\Rightarrow 積構造) とすると,

$$P(\omega) = p^{\#\{j \mid \omega_j = 1\}} (1 - p)^{\#\{j \mid \omega_j = 0\}}.$$

確率変数 (random variable) のことばで言えば

- $X_j: \Omega \longrightarrow \{0,1\}, \quad X_j(\omega) = \omega_j$
- $P(X_i = 1) = p$, $P(X_i = 0) = 1 p$
- \bullet X_j たちが独立.

平均 (期待値)
$$E[X_j] = 1 \cdot p + 0 (1 - p) = p.$$

独立性から、
$$E[X_iX_j] = E[X_i]E[X_j]$$
 $(i \neq j)$.

一般に、
$$E[f(X_i)g(X_j)] = E[f(X_i)]E[g(X_j)]$$
 (f, g: 実数値関数).

$$n$$
 回試行で 1 の出る回数 $S_n = \sum_{j=1}^n X_j$

標本平均
$$\frac{S_n}{n} = \frac{1}{n} \sum_{j=1}^n X_j$$
 (標本 ω に応じて変化する量).

大数の法則 (Law of Large Numbers) : $\lim_{n \to \infty} \frac{S_n}{n} = p$

- 収束の意味が問題
- 実は $P = P_{p,n}$, つまり, 確率 P が p と n に依存.

★ 大数の弱法則 (weak LLN)

任意の
$$\varepsilon > 0$$
 に対し, $P_{p,n}\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) \xrightarrow[n \to \infty]{} 0$

★ 大数の強法則 (strong LLN)

$$??$$
 任意の $\omega \in \Omega$ に対し, $\frac{S_n(\omega)}{n} \xrightarrow[n \to \infty]{} p ??$

これは言い過ぎ、

$$\omega=(1,1,\cdots,1)$$
 ならば $\dfrac{S_n(\omega)}{n}=\dfrac{n}{n}=1$, $\omega=(0,0,\cdots,0)$ ならば $\dfrac{S_n(\omega)}{n}=\dfrac{0}{n}=0$.

「すべての標本」でなく「確率1」に修正?

$$P\Big(\lim_{n\to\infty}\frac{S_n}{n}=p\Big)=1.$$

しかし, p と n に依存する確率 $P_{p,n}$ しかないのに, この確率 P とは ??

★ 中心極限定理 (Central Limit Theorem)

$$\sqrt{n}\left(\frac{S_n}{n}-p\right) \xrightarrow[n\to\infty]{} N\left(0,p(1-p)\right)$$
: 平均 0 , 分散 $p(1-p)$ の正規分布.

左辺の分散は $\frac{1}{n}V(S_n)=\frac{1}{n}\,n\,V(X_1)=E[(X_1-p)^2]=p(1-p).$ 収束の意味は

$$\lim_{n \to \infty} P_{p,n} \left(a \le \sqrt{n} \left(\frac{S_n}{n} - p \right) \le b \right) = \int_a^b \frac{1}{\sqrt{2\pi p(1-p)}} e^{-\frac{x^2}{2p(1-p)}} dx.$$

直観的に

$$rac{S_n}{n}pprox p+rac{1}{\sqrt{n}}Nig(0,p(1-p)ig), \qquad rac{1}{\sqrt{n}}$$
 のオーダーのゆらぎ

3. コインなげモデル ≪無限試行≫

- 標本 $\omega = (\omega_1, \omega_2, \omega_3, \cdots)$, $\omega_i = 1$ or 0
- 全事象 $\Omega = \{0,1\} \times \{0,1\} \times \dots = \{0,1\}^{\infty}$: 非可算 (連続) 集合 ($\cong [0,1]$)

事象とその確率をどうやって導入するか?

普通に考えれば、
$$P(\omega) = 0$$
. e.g. $P((1,1,\cdots)) = 0$.

$$E\subset\Omega$$
 に対し $P(E)=\sum_{\omega\in E}P(\omega)$ とするなら,

0を非可算個たしあわせる??

k回までの試行で決定される事象

$$\epsilon_1, \cdots, \epsilon_k \in \{0, 1\}$$

$$E = \{ \omega = (\omega_n) \in \Omega \mid \omega_1 = \epsilon_1, \cdots, \omega_k = \epsilon_k \} \quad (\star)$$

の族を考えて、 さらに $k \in \mathbb{N}$ を全部うごかす.

確率論	平面幾何
全事象	\mathbb{R}^2
標本	点
事象	図形
確率	面積
全事象標本事象	R ² 点 図形

事象 E にわりあてるべき確率

$$P(E) = p^{\#\{j \in \{1, \dots, k\} | \epsilon_j = 1\}} (1 - p)^{\#\{j \in \{1, \dots, k\} | \epsilon_j = 0\}} \tag{**}$$

全部 1 の事象
$$\{(1,1,\cdots)\} = \bigcap_{n=1}^{\infty} \{\omega_1 = 1,\cdots,\omega_n = 1\}$$

$$P((1,1,\cdots)) = P\left(\bigcap_{n=1}^{\infty} \{\omega_1 = 1, \cdots, \omega_n = 1\}\right)$$
$$= \lim_{n \to \infty} P(\omega_1 = 1, \cdots, \omega_n = 1) = \lim_{n \to \infty} p^n = 0 \quad (\text{if } p < 1)$$

- 2つめの等号は、確率Pの"連続性".
- (*) の形の部分集合の可算個の交わりと合併で得られる部分集合全体 \mathcal{E} を事象の集合と規定すると, 確率 P は \mathcal{E} を定義域とする関数 $P:\mathcal{E}\longrightarrow [0,1]$. (**) の定義を \mathcal{E} まで拡張する.

こうして, 有限試行のときの確率の族 $\{P_{p,n}\}$ が n によらない確率 $P=P_p$ として統合される.

★ 大数の強法則 (sLLN)

$$P_p\left(\lim_{n\to\infty}\frac{S_n}{n}=p\right)=1.$$

"ほとんど確実に"標本平均 $\frac{S_n}{n}$ が (1 回あたりの) 平均 p に収束する.

参考: 大数の弱法則 (wLLN) の証明

Chebyshev の不等式を準備

$$E[X^2] \ge E[X^2 : |X| > a] \ge E[a^2 : |X| > a] = a^2 P(|X| > a).$$

任意の $\varepsilon > 0$ に対し, X_j たちの独立性から

$$P\left(\left|\frac{S_n}{n} - p\right| > \varepsilon\right) \le \frac{1}{\varepsilon^2} E\left[\left(\frac{S_n}{n} - p\right)^2\right] = \frac{1}{\varepsilon^2} V\left(\frac{S_n}{n}\right) = \frac{V(X_1)}{\varepsilon^2 n} \xrightarrow[n \to \infty]{} 0.$$

4. Pascal 三角形

前節までは $p \in [0,1]$ を固定した話であるが, p をうごかして見渡すと...

$$\mathbb{P} = \bigcup_{n=0}^{\infty} \mathbb{P}_n, \quad \mathbb{P}_n = \{(n,k) \mid k \in \{0,1,\cdots,n\}\}, \quad n \in \{0,1,2,\cdots\}$$

各点線が $n=0,1,2,\cdots$,

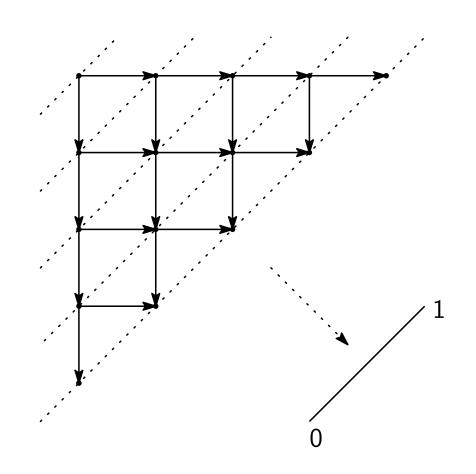
点線上で左から $k=0,1,2,\cdots$.

(0,0) からスタートし無限に延びる \mathbb{P} 上の経路全体 \mathfrak{T} .

右向き矢印に 1, 左向き矢印に 0 を対応させると

$$\mathfrak{T} \cong \{0,1\}^{\infty}.$$

 P_p は経路空間 $\mathfrak T$ 上の確率とみなせる.



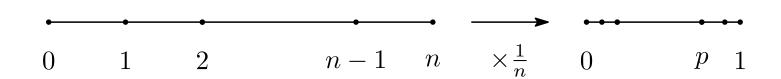
 $S_n = \sum_{j=1}^n X_j$ は $\mathfrak T$ 上の関数で, $S_n(\omega)$ は経路 (=標本) ω が第 n レベルで何

番めの位置を通るかを示す. (0,0) から (n,k) に至る経路数が ${}_n\!C_k$ だから,

$$P_p(S_n = k) =_n C_k p^k (1-p)^{n-k}.$$

★ 大数の強法則 (再掲): ほとんど確実に $(P_p$ -almost surely)

$$\lim_{n \to \infty} \frac{S_n}{n} = p.$$



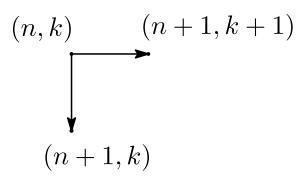
つまり、確率 P_p ではかると、ほとんど確実に経路の彼方が 1/n スケールでは p の位置に集中していく.

 \implies 閉区間 [0,1] が Pascal 三角形の理想境界 (前ページ図)

確率の決め方 (*), (**) を見ると, 1対1の対応 (全単射)

$$\mathfrak T$$
上の確率 P_p \updownarrow

 \mathbb{P} 上の関数 $\varphi_p(n,k) = p^k (1-p)^{n-k}$.

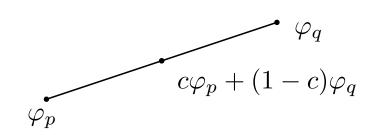


▶ φ_p は \mathbb{P} 上の (正規化された) 調和関数:

$$\varphi_p(n,k) = \varphi_p(n+1,k) + \varphi_p(n+1,k+1), \qquad \varphi_p(0,0) = 1.$$

(:)
$$p^k(1-p)^{n+1-k} + p^{k+1}(1-p)^{n+1-(k+1)} = p^k(1-p)^{n-k}(1-p+p)$$

2 つの調和関数の凸結合 (=2 つの調和 関数を結ぶ線分上の点) も調和関数.



さらに, 連続無限個の調和関数の凸結合

$$\int_0^1 \varphi_p f(p) \, dp \quad \Big($$
 ただし、 f は確率密度関数: $f(p) \ge 0$ 、 $\int_0^1 f(p) \, dp = 1\Big)$

も調和関数. 実は, ℙ上の任意の非負値調和関数は, コインなげから来る調和関数に分解できる:

 \bigstar \mathbb{P} 上の関数 $\varphi(n,k)$ が

$$\varphi(n,k) = \varphi(n+1,k) + \varphi(n+1,k+1), \quad \varphi(n,k) \ge 0, \quad \varphi(0,0) = 1$$

をみたせば, [0,1] 上の確率 μ がただ 1 つ存在して

$$\varphi(n,k) = \int_{[0,1]} p^k (1-p)^{n-k} \mu(dp)$$
 (**)

が成り立つ (ℙ上の調和関数の積分表示).

例 (※)の特別な場合

$$\int_{0}^{1} p^{k} (1-p)^{n-k} \frac{\delta_{x}(dp)}{2} = x^{k} (1-x)^{n-k} \quad (0 \le x \le 1)$$

$$\int_{0}^{1} p^{k} (1-p)^{n-k} \frac{\delta_{0} + \delta_{1}}{2} (dp) = \left(\frac{1}{2}\right)^{n}$$

$$\int_{0}^{1} p^{k} (1-p)^{n-k} 1 dp = B(k+1, n-k+1) = \frac{k!(n-k)!}{(n+1)!} = \frac{1}{(n+1)nC_{k}}$$

$$\int_{0}^{1} p^{k} (1-p)^{n-k} 2p \, dp = \frac{2(k+1)!(n-k)!}{(n+2)!}$$

$$\int_{0}^{1} p^{k} (1-p)^{n-k} \frac{8}{\pi} \sqrt{p(1-p)} dp = \frac{1}{2^{2n+1}} \frac{(2k+2)!(2n-2k+2)!}{(n+2)!(k+1)!(n-k+1)!}$$

$$\int_{0}^{1} p^{k} (1-p)^{n-k} \frac{1}{\pi \sqrt{p(1-p)}} dp = \frac{1}{2^{2n}} \frac{(2k)!(2n-2k)!}{n!k!(n-k)!}$$

今日の話のハイライト

- コインなげモデルの大数の強法則
- Pascal 三角形上の調和関数の積分表示

ともに無限回の試行を包括する確率空間の設定のもとで記述可能.