\documentclass{jarticle}
\usepackage{amsmath,amssymb,ascmac,emathP,emathE}
\newcounter{toi} \newcounter{subtoi}[toi]
\newcounter{subsubtoi}[subtoi]
\def\toi{\refstepcounter{toi}
\makebox[2zw][r]{\fbox{\Large\arabic{toi}}\hspace{1zw}}\hangindent=1zw}
\def\subtoi{\refstepcounter{subtoi}
\makebox[3.4zw][r]{(\arabic{subtoi})\hspace{1zw}}\hangindent=2.4zw}
\def\arraystretch{2.05}
\pagestyle{empty}
\textwidth=18cm
\textheight=25cm
\oddsidemargin=-1.2cm
\topmargin=-1.2cm
\begin{document}
\lineskiplimit=2.0ex
\normallineskiplimit=\lineskiplimit
\lineskip=\lineskiplimit
\normallineskip=\lineskiplimit
\hskip2zw {\LARGE 数学Q 一学期末考査} \quad
\hskip2zw \hfill
\underline{\hskip1zw 年 \hskip2zw 組 \hskip2zw 番 \hskip3zw 氏名 \hskip30ex}
\vspace*{2ex}
\begin{minipage}[t]{90mm}
\toi (1)〜(4)の式を計算せよ.また、(5)の問に答えよ.
\subtoi $\left ( -\bunsuu{x^2}{2y} \right )^5 \div \left ( \dfrac{1}{4}x^5 \div y^3 \right )^2$
\subtoi $(a-b+c-d)(a+b-c-d)$
\subtoi $(a+b+c)^2-(b+c-a)^2+(c+a-b)^2-(a+b-c)^2$
\subtoi $(x+3)(x+2)(x-2)(x-1)$
\subtoi $x^3+ax+b$ が $x^2+1$ で割り切れるように,定数 $a,\ \ b$ の値を定めよ.
\vspace{5mm}
\toi 次の式を計算せよ.
\subtoi $\bunsuu{1}{x}-\bunsuu{2}{x^2-1}+\bunsuu{1}{x^2-x}$
\subtoi $\bunsuu{1}{a-\bunsuu{a^2-1}{a+\bunsuu{1}{a-1}}}$
\vspace{5mm}
\toi 次の式を計算して、簡単にせよ.
\subtoi $\bunsuu{1}{1+\sqrt{2}+\sqrt{5}}$
\subtoi $\bunsuu{2-\sqrt{3}}{2+\sqrt{3}}+\bunsuu{\sqrt{3}+1}{\sqrt{3}-1}$
\subtoi $\bunsuu{1}{\sqrt{4-\sqrt{12}}}+\bunsuu{2}{\sqrt{4+\sqrt{12}}}$
\vspace{5mm}
\toi 次の斜線部分で表される領域を不等式を用いて表せ。ただし、境界は含まない。
\begin{edaenumerate}[(1)]
\item %
{\unitlength1cm\small
\begin{zahyou}<(0,-3pt)[tl]><(0,0)[rt]><(2pt,-3pt)[rt]>(-2,2)(-2,2)%
\zahyouMemori%
\def\O{(0,0)}%
\def\A{(-1.8,-1.8)}%
\def\B{(1.8,-1.8)}%
\def\C{(1.8,1.8)}%
\ougigata*[0]{1}{-135}{45}%
\Put\O{%
\ougigata**{1}{45}{225}}%
\Nuritubusi*{\A\B\C\A}%
\ougigata*[0]{1}{-135}{45}%
\Gurafu{1,0}\xmin\xmax%
\En\O{1}%
\Put\O{\makebox(0.1,-0.4)[l]{ O}}%
\drawline(0,0)(1,0)%
\drawline(0,0)(0,-1)%
\Put{(0.8,1.6)}{$y=x$}%
\end{zahyou}}
\item%
{\unitlength1cm\small
\begin{zahyou}(-2,2)(-1,3)%
\zahyouMemori%
\def\Fx{1,0,0}%
\Nuri*\Fx{-0.62}{1.62}%
\Gurafu\Fx\xmin\xmax%
\Gurafu{1,1}\xmin\xmax%
\Put{(0.8,2.8)}{$y=x^2$}%
\end{zahyou}}
\end{edaenumerate}
\end{minipage}
\hspace{5mm}
\begin{minipage}[t]{75mm}
\vspace{-5mm}
{\bf 解答欄}
\vspace{-5mm}
\begin{center}
\begin{tabular}{|c|c|l|}\hline
&(1)& \\\cline{2-3}
&(2)& \\\cline{2-3}
1&(3)& \\\cline{2-3}
&(4)& \\\cline{2-3}
&(5)& $a=$ $b=$ \\\hline
\end{tabular}
\def\arraystretch{3.7}
\begin{tabular}{|c|c|l|}\hline
\smash{\raisebox{-3zh}{2}}&(1)& \\\cline{2-3}
&(2)& \\\hline
\end{tabular}
\def\arraystretch{3.0}
\begin{tabular}{|c|c|l|}\hline
&(1)& \\\cline{2-3}
3&(2)& \\\cline{2-3}
&(3)& \\\hline
\end{tabular}
\def\arraystretch{5.5}
\begin{tabular}{|c|c|l|}\hline
\smash{\raisebox{-4zh}{4}}&(1)& \\\cline{2-3}
&(2)& \\\hline
\end{tabular}
\end{center}
\end{minipage}
\end{document}
|